UNIFORM ASYMPTOTIC STABILITY OF SYSTEMS OF
DIFFERENTIAL EQUATIONS WITH A SMALL
PARAMETER IN THE DERIVATIVE TERMS

(RAVNOMERNAIA ASIMPTOTICHESKAXA USTOICHIVOST’
SISTEM DIFFERENTSIAL’ NYKH URAVNENII S MALYM
PARAMETROM PRI PROIZBODNYKH)

PMM Vol.25, No.4, 1961, pp. 680-690

A.I. KLIMUSHCHEY and N.N. KRASOVSKII
(Sverdlovsk)

(Received March 7, 1961)

In this paper, under the assumption of uniform asymptotic stability of
the degenerate first approximation system and the asymptotie stability of
a certain auxiliary system, it is shown that a certain class of systems
of differential equations, containing a small parameter among the deriva-
tive terms, is asymptotically stable.

The method of Liapunov functions (11 is employed. It should be re-
marked that the possibility of applying the classical methods of the
theory of stability in dealing with systems containing small parameters
in the derivative terms had already been pointed out by Chetaev [2].
Also, as is well known, systems with a small parameter in the derivative
terms have been studied in great detail by A.N. Tikhonov and his co-
workers, and I.S. Gradshtein.

The theorem proved in this paper for the linear case is a generaliza-
tion of the theorem proved by Razumikhin [ 3 ] for systems in which the
small parameter ocecurs in only one equation of the system.

1. Linear systems. Consider first the linear system of differ-
ential equations

dz; m n
E:E au(t)x,J,—z bis(t)ys+fi(t) (i=1,...,m)
- = (1.1)
y.
pg =2 i@z +dis (0 ys (i=1,...,n)
=1 s=1

where g is a small positive parameter. We shall consider the stability
of the solutions of this system which are defined by the initial
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conditions

Tig=gio (=1,....m)s Yio=Pjp (=1, ....n) for t =14, (1.2)

These solutions will be denoted as follows:
x; = 7y (2, p’)v Y = yj(t, p’) (13)

Let us suppose that the coefficients a;;(¢t), b, (t), cjl(t),d-s (t)
and f;(t) of the system (1.1) are continuous and bounded Tunctions of
the variable t, having continuous bounded derivatives for t; < ¢ <.
Further, we shall employ the condition

du{t) di(t) cee o di ()

dey (1) dag (2 Ce ey (2
= () =) an (1 >B8>0 (B— a certain number) (1.4)

oy (8) dpy (1) o .. dy (1)

For p = 0 the degenerate system corresponding to the system (1.1) has
the form

n

dIi m‘! -
= an ) r+ 2 b Oy + i @),
1=

s$=1

cit () zi+ 2 dis () yo == 0 (1.5)

1 s=1

INAE!

and the solutions of this degenerate system (1.5) which satisfy the
initial conditions x;, = g;, will be denoted by

=z (), y;=1y; () (1.6)

Let us solve the system of n algebraic equations

-

1 n

2 (et X dig () ys =0 (o=l
=1 s=1
with respect to y;, ..., ¥,; and let its solution be
Ys == za ha () a4 (s=1,...,n) (1.7

i=1
where the functions Asi(t) are continuous bounded functions of t.

The substitution of Expressions (1.7) for the y’'s into the first m
equations of the degenerate system (1.5) leads to the following system
of m linear differential equations with variable coefficients:
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m
d,

{“1 : 2 rik (1) x4 £i (1) (i=1, ..., m ('1.8)

k=)

where the functions r;,(t) are continuous bounded functions of t.

The system of differential equations

dy . . .
L= d )y, G=1n (1.9)

s=1

will be called the auxiliary system.

In the sequel it will be shown that under suitable conditions, for
small values of the parameter p > 0, the trajectories of the original
system of equations (1.1) converge towards the trajectories of the de-
generate system (1.5) and that the stability of the auxiliary system
(1.9) implies the stability of the original system (1.1).

Theorem 1.1. Suppose that the given system (1.1) and its correspond-
ing degenerate system (1.5) satisfy the following conditions:

1) The system (1.8) is uniformly asymptotically stable;
2) The system of equations with constant coefficients

[/,/ n

is equi-asymptotically stable for all (fixed) values of 6 with 6 € [ ¢,
w]; or, what is the same, the roots of the characteristic equation

|djs —- pd; = 0
satisfy the condition

RepJ — A, A = const >0 (0;6=0, 1f jFs o =1 1if [=3y)

Then for all sufficiently small values of g > 0 the system (1.1) is
aniformly asymptotically stable, and given Q> 0 and ¢ > 0 there exists
a number g, > 0 such that

zi(t,p) — 2 ()| <e, Hy;(Gp)— y; ()< (1.10)
1Y (Lo ) — ¥ (L) < Q for 1>1(Q, ¢

provided only that p < p;. The number p, may be chosen so small that the
number t; appearing in (1.10) will differ from the number ¢, by less
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than a number y > 0 given in advance.
Proof. Let us introduce functions ¢; and n; by means of the equations

Ei (L, p) = z; (¢, p) — z: (2), n; (Gw) = y; (4, p) Z Mk (1) x4 (1, 1)

ko=t

and consider the equations of the perturbation of the motion

dg; (¢, p) N dz; (L, 1) _(Ixi(l)
dt - dt dt

(e w) dy ) Q dhy e u m
e T ) ) — Z Mg (1) —%

dt dt

k=1

In view of Equations (1.1) and (1.8) we obtain

dE (L) <
_g.dl_ =D W —2 bis () me(t, W)
I=1 (1.11)
. - n
w1 2 dy. (O (1 z A >2r“<z> Bt p)—
m dh ., (1 mw .
Y _J;‘T(_) Ex (2 Z, Agi () 2 g (1) (1) —
k=1 r =1 =1
m dh (1 m m "
o Z :[l; )Tk ([) Z Z 1);, }-l) ' 1’\ (t) ( )
k=1 k=1 A:\

In order to prove the theorem it is necessary to prove that the solu-
tion &;(t, p) 1; (t, p) of the systems (1.11) satisfies the following
condition: given Q ¢ and 8 in advance, there exists a number g > 0 such
that for arbitrary initial data £, = 0, |9,,| < Q one has as a conse-
quence that the inequalities |§i(t, ) <€) |nj(t, 1) < € hold for
t > ty+ 8, provided that p < p.

In view of the conditions of the theorem, the system of linear differ-
ential equations with variable coefficients (1.8) is uniformly asymptotic-
ally stable. Consequently, there exists a positive-definite quadratic
form v(t, &,, ..., &) = v(t, &;) whose total derivative, in view of the
system (1.8), is a negative- -definite form [5]. Now, the system (1.9) is
asymptotically stable for fixed 6, uniformly with respect to €. Thus for
these systems there also exists a positive-definite quadratic form w(0,
N1 --«» N, = w(0, 1.) whose total derivative, in view of (1.9), is for
0 = const a negatlve éef1n1te form; and furthermore the partial deriva-
tive dw/06 (8, nj) is bounded and the positive-definite form w(@, nj) and
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the negative-definite form dw/d6(8, n.) relative to the system (1.9) are
bounded away from zero uniformly with respect to the parameter 4.

Let us now construct the positive-definite form

u(t, & my) = v (4 &) +w(t ) (1.12)

and let us show that the total derivative du/dt of this form, computed
taking into account the system (1.11), is, for sufficiently small values
of the parameter u, a negative-definite form everywhere outside a small
neighborhood of the origin of coordinates £; = 0, n;=0.

Indeed

duft, &, m) 90 (L &) o 90 (L E) r oo z
= il = ,LZT_[ }J ry (& (1, p)— Z s (L, PL)]
=1 i =1 §=1
du(t, my) <y 0wt M)
B S g
= =

i b m 1t m

\ - dhg, (1) \ 1
— N AR T () B () — D= e ) — S ) S () oy (1) —
L= =1 k=1 k=1 =1
m n m

NI 0= B D bW - Y A 040)] (113)

k=1 k=1 s=1 k=1

Let us note that in the domains M < |£;|, M < [n |, where M is a
suitably chosen positive number, the sign of du(t, él, n; :)/dt is defined
by the sign of the quadratic form in ¢; and n; which occurs on the right-
hand side of (1.13). Let us now construct the matrix of coefficients of
the quadratic form of &, ; which is given by — du(t, £, n;j .)/dt, that
is, the matrix which is the negative of that occurring on the right-hand

side of (1.13):

%1 Fpe - My B B I Bin

%oy %o Lom Boy Bao Ban

aml otm2 ) amm Bml Bm‘.’ -an
| 1 1 ‘

Tin Tie LTS Oy T 9 I Opp 35 - - - m Opp 7 91 | (1.14)
1 1 8 1 -

To1 Voo Tom 11'621 + 59, o O = Ggs o % 7
1 1 N 1 5 .

] Ta1 The Tam E 6n1 + ni p,_ 6112 ™ O E nn -+ “nn

where the coefficients a;; are the coefficients in the quadratic form
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dv/dt in view of Equations (1.8); the coefficients B are those of the
quadratic form

61’(1 ;)
St z bis (1), (2, )
i=1
The expressions (l/y)Bjs + 0 are the coefficients of the quadratic
form
e, m) e (L M)
— i+ 2 [;Zldjs () ms (1, ) AEIM t)ths ORNTINY
j= s= =

Finally, the Yj1 are the coefficients of the quadratic form

5w, M) [ e o T dhs ()
D D 0 RO 8w+ B TR (e, )]

om.
i=1 nJ k=1 =1 k=1

In view of Sylvester's criterion for positive quadratic forms, and in
view of our hypotheses concernlng the functions v(t, £;) and w(t, ur ),
all the principal diagonal minors of the matrices

1 1 !
— 6 — 8 o
m 1" n 12 0 in
1 Ao im 1 1 1
o ey Ay w0 e W O
“ 11)11 dnn‘l e 11717”’ _1_ L 4} e . _1>" o}
p Ont n2 n onn

are positive. From this it follows that the principal diagonal minors of
the matrix (1.14) are also positive for sufficiently small g, i.e. the
quadratic form used in the construction of du(t, &, nJ)/dt is negative-
definite.

Let us show that as p approaches zero the domain outside of which the
total derivative of the form u(t, £;, 7.) is negative-definite also
approaches zero; that is to say, that as g » 0 one has also that M- 0.
The expression for du(t, ¢, qj)/dt may be written

u (ta gi, T]J)/d[ =K (t, giv ’I”|]) + L (t’ ’]j)

where K(t, &, n; ) is a quadratlc form in the variables £, M and

L(t, n.) is a lidear form in the variables 7. Let us now add and subtract,
to the right- hand side of the last equation, the quadratic form (w/u)
(nl st 2) where w is a small positive number. From the known de-
pendence of the coefficients of the quadratic form K(t, &, 7; :) on p,

and the smallness (for w small) of the coefficients of the foim (w/p)
(ql cee v, ?) with respect to the coefficients in 1; of the form
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K(¢, ¢, nj), it follows that the form
Ko (6,8 m) =K (& ) +(o/p)(m2+ ...+
is negative-definite. Consider now the difference
L(t,m) — (o/w) m® + ... +1,%

As p > 0 the domain lqjl > M, outside of which this difference is
negative-definite, reduces to the surface ;= 0. But from this it
follows that the form

du(t, &;, 1)
TJ = Ki (¢, &, ;) +L (¢ my) —

is negative-definite outside an arbitrarily small neighborhood of the
origin fi = 0, nj= 0, provided that the number p is sufficiently small.
Consequently, the functions u(t, &, nj) and du(t, £, nj)/dt satisfy
the following conditions:

du (¢, Ei, )
w(t b ) > QG n)y ot < @y (5, ) for | &[> M, (&> M

where Q,(£;, qj) and (£, nj) are positive forms which do not depend
upon t.

Taking into account the positive-definiteness of the form Q,(¢;, nj)
in the space ¢;, U let us consider a level surface {, (£, nj) =C;
such that the moving surface u(t, £;, 7;) = C|, containing the initial
point of the trajectory of the disturbeé motion P(£,, ”jo)' lies inside
the surface Q, (£, qj) = C;. In view of this mentioned negative sign of
du(t, &, n.)/dt on this moving surface, we arrive at the conclusion
that the trajectory of the system (1.11) remains inside the moving sur-
face u(t, &, nj) = C; for all t > t,.

Further, consider a second level surface Q,(¢;, nj) = C,, where
Cy < €y, and such that the moving surface u(t, &;, 7:) = C, contains the
domain determined by the number M. If a trajectory o% the system (1.11)
were outside the domain defined by the level surface u(t, £;, 7;) = G,
for all time, then the inequality du(t, ¢, nj)/dt < - a would ﬂold for
some positive a. From this, in view of the equation

L du(t, &, 1)
u (L, &y M) = u (fos Eior Mjo) *i_\ o

we obtain lo

u (tv Eia 7]1) < u (t07 gim leU) —a (t - to)
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which leads to a contradiction. Therefore, the trajectories of the system
of equations (1.11) must eventually enter, and remain inside, the domain
bounded by a second level surface u(t, £, nj) = C,.

It remains to show that the quantities 5 ; decrease rapidly to less
than €. For this we shall consider only the trajectories of the system
(1.11) which are determined by the initial conditions £;, = 0, that is,
by the conditions x,(ty, p) = x;(t;). Let us show that such a trajectory
of (1.11) approaches the origin of coordinates in an arbitrarily small
time interval, provided that the parameter p itself is sufficiently small.

Indeed, the derivative of the form u(t, &, nj) with respect to time,
as was shown earlier, is negative and depends on'p in such a way that
the coefficients with respect to 1,1, of the quadratic form k(t, &, nj)
contain terms with 1/u as a factor. Therefore, as p approaches zero these
coefficients increase indefinitely, as does also the absolute value of
the negative derivative du(t, &;, nj)/dt when subjected to the condition
|qj| > M. From this it follows that the function u(t, ¢, nj) remains
positive-definite, decreases rapidly in absolute value, and that the
trajectories of (1.11) approach the origin of coordinates &; = 0, n;=10
in an arbitrarily small time interval. (The quantities 7. must decrease
rapidly, and at the same time the quantities £,(t, p) cannot increase
rapidly, in view of the continuity of the integrals.) For all succeeding
times the trajectories of the system of equations (1.11) must remain in
a small neighborhood of the origin of coordinates. That is, the trajec-
tories of the original system (1.11) approach arbitrarily fast to a
sufficiently small neighborhood of the trajectories of the degenerate
system of equations (1.5), and remain in this neighborhood for all time
to come.

Let us now verify the asymptotic stability of the system (1.1). In
order to do this, let us consider two solutions of this system with
different initial values, or, what amounts to the same thing, two solu-
tions of (1.11) with different initial conditions. Let us designate these
solutions by

a () =8u(Lw — e w, 35w =0, G p) —np e (1.15)
From (1.15) and (1.11) it then follows that

n

e () = X b ()8 )
=1 s=1
I ,“‘ m HAL‘
S D (D3 W) — 2 M) D (O m (6w —
s=1 k-1 =1

= 2 ) — X A 2 b (B ) (1.16)

L=l k-1 =1

ul”l,pl
ut
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Consider now the positive-definite form
w(t,a, B) = v (o) +Fw(,B) (1.17)

which is constructed as in (1.12). This form, for sufficiently small
values of the parameter p, has a negative-definite derivative du(t, &,

; :)/dt, which may be computed taking (1.16) into account. This computa-
t1on proceeds analogously to the discussion above concerning (1.13). Con-
sequently, the form (1.17) is a Liapunov function for the system (1.16),
and this guarantees the asymptotic stability of the system (1.16). The
asymptotic stability of the system (1.16) then implies the asymptotic
stability of the system (1.1).

2. Nonlinear systems. Consider the nonlinear system

dr. i}
7;-: ‘\i (Is\ ylﬁ l), Ii() = Qg ([' s=o4, oL, n)

dy; .
K (/j = YJ (Is: Yis [)1 Yin = bjl) T

where the parameter p 1is positive, and the following notation has been
employed for the sake of brevity:

X'i (‘Tsy Y, [5 :Xi (Ila s T W - Y l)

)rj (‘,[57 .]/’l'V l) == Y} (xlv R xyuv .//lv L .I/nv l)

Furthermore, in what follows the range of the indices will always be:
i, s=1, ..., mand j, k=1, ..., n.

It will be supposed that the functions X, (xs, Vi t) and Y, (xs, Y t)
have continuous bounded derivatives with respect to all the1r arguments
in the domain |x | < =, |yp|< o, ty < t < oo, and that D(Y;, ..., ¥}/
D(y,, ..., y) # 0.

The degenerate system of differential equations obtained by setting

= 0 1in (2.1) is
{x. g o
Ldi[l - Xi (Isy Y l)y YJ ('r'sy Yk [) = ()1 Ty = Qo (")")")
It will be supposed that the system of n equations Y, (xs, Ypr t) =
has as a solution the functions
2/] - /j (Isv [) b= 2‘ e ”') (23)

whose partial derivatives with respect to x, and t are bounded.

Let us substitute the functions y,, ..., y, of (2.3) into the first m

n
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equations of the degenerate system (2.2). We obtain the following system
of m equations in the x;:
dz; -
dr = A1'.[Isv fk; (Isy t)r t] = Fi (TS’ t)’ Tip = Qio (24)
Let the solution of the original system (2.1) corrééponding to the
given initial conditions be

Ty = (tv p’)’ ¥Yi=1Y;j (t) l“t) (25)

and the solution of the degenerate system (2.2) with the corresponding
initial conditions be

=z (), y=y; ) =/flz@,tl (2.6)

Let us construct the auxiliary system of equations of disturbed motion
relative to a given solution x; = x;(t) of the system (2.4), starting
with the equation z; = xz;*(t) — x;(t), where x;*(t) is a solution of the
system (2.4) which corresponds to a perturbation of the initial condi-
tions Aa;, = a;,* - a;9; we obtain

dz;
TZFi [zs—{_xs(t)’ t] _Fi [xs(t)’ t]

= Xi [Zs + s (l)7 fk (zs + ZLs (t)v t)? t] - Xi [xs (t)v fk (xs (t)v t): t] (27)

It will be supposed that the linear approximation to the system of
equations of disturbed motion (2.7) is asymptotically uniformly stable;
that is, that the system (2.8) below is uniformly asymptotically stable:

dz,  — . s . ]
F=De0n (w0 - +3 SR o) @8

- ay, ' Oxg

Together with the above systems we shall also consider the system

dy; . ‘

i =Y e B) (2.9)
where a takes the place of x, and B takes the place of t. Let us assume
that for each fixed set of values a, = x (8), |2, | <, B=1t, t, {B< o
there exists a symmetric matrix of constants A(a,, f) with positive eigen-
values p; (which is supposed to be uniformly bounded with respect to ag
and B and to be such that p;(a,, B) > A> 0) and such that the symmetrized

matrix
(Bl = ({ 4 %}jk + {A %—};}k) l/{%}jk - ?;Z) (2'1(.))

\
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has negative eigenvalues r; which satisfy the inequality r; < -y (with
y = const > 0) for all values |y.| < «. Under these circumstances every

solution y; of the system (2.9) 1s asymptotically stable [6 ], regardless
of the initial conditions Yjor

Let us construct the system of disturbed motion corresponding to the
system (2.1), starting with the equations

gi (t, P) = % (l’ P’) — I (t)a n; (tv l"') =Y (tv P‘) - fj [IS (l, l»l), t]
We obtain the system

dE (L p)  de(top)  dm()

dt - dt dt
m .
dn; (¢, ) _dyi(t, pw) Z of; dz (L, 1) o 9
dt - dt = iz dt at

whose first m equations are just

dgz(:lvt W) _ Xi [.’E s( ) Yk (l — X l) Yk () ]

or, equivalently

S B Xl 0 + B, feln) + B @), 1) me (), 1 —
[2,(0), fu [z, (0), 1], 2] =

@ [0X; | w9, ax*
s=1[”s T2 «n]gs(‘ ”>+Z T, L W)+ Ri(E)

In the last equation Taylor’s theorem for functions of several vari-
ables has been used; the next to the last term represents the increment
of the function X[ T, Yo t ] with respect to yk(t), and Ri(fs) refers
to second and higher order terms with respect to ¢ (t, p). This equation
may be abbreviated thus:

m

Bl 1) SPTACING (8 p) + Ri(Es)

The last n equations of the disturbed motion are

dny (W) dy; () 1 O da ) 8

dt dt ox dt Y
s=1 §

or
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dn; () Y55 (6 @),y (1 ) 1) Q 0/
]dt p,k —821 X[ ( l"’)'l yk(t1 “)7 lj—
0 Ym0+ B (L W, fle () E (G w0+ (), 2]
Fr w -

— Z _Z:‘—z Xs [.’175 (l) + gs ([, P‘): fk[zs (t) +§s (t7 P’)’ t] + Nk (t! p')’ t] -

—E’Xw%mnmmtnla*+2“XkM»hm@nu

$=1

For brevity, let us write x (t) + £ (¢, p) = a*(t); then this system
of n equations may be rewritten

dn; (L B) Yo (0, f log (0t 4y (6 ), 1] o
! 41 = -2 x m u 2 T]l M) +
i 7
T2 R E) GO () = 2 5 s )
k=1 §=1

where the terms Y1 10,0, 1) + ... a 1,(t, 1) take the place of the
sums of the derivatives df /dxl when tﬂe increments of the functions

X, Ux (t), y,(¢), t] with respect to y,(t) are written by means of
Thylor s theorem. The symbol R}*(f ) stands for a collection of terms
which contain the functions ¢ _(t, p) to the second or higher orders; and,
finally, Q(t) is a function of t.

Thus, the system of equations of the disturbed motion has the form

‘_{E_(j_ll)_zms(t Gs +2 7]1: t H)_{_R (S) (2.11)
s=}] k=1
dn; ( . i
B LY a0, f ot 0 G, D+ D 0 B (6 W) +
=1

+ 2 e () F R E) Q) (Ve fi lagt, tl, 1y =0)
k=1

By hypothesis, the system (2.8) is uniformly asymptotically stable.
Consequently, there exists a positive-definite quadratic form v(t, £,) =
v(t, &, ..., &) vhose total derivative, calculated making use of the
system of equat1ons (2.8), is a negative-definite quadratic form. But it
was also supposed above that the system of equations (2.9) has the pro-
perty that for each fixed set of values a = x (t) =x . (B) and B = t,

€ B < = there exists a symmetric matrix A(a s B) hav1ng positive eigen-
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values and satisfying Equation (2.10). Therefore, the system of equations
(2.9) possesses a Liapunov function wia,, B, 7k) = wiay, ..., a,, B, 1y,
coes M), Mg = ¥p — filag, B) whose total derivative, computed taking the
system (2.9§ into account, satisfies the inequalities (16.22), (16.23)
and (16.24) which appear in [6 ].

Let us construct the positive function
u (ta §i1 7]1) =7 (tv gl) 'IL w [xs (t)7 t, T])] (212)

and let us prove that the total derivative of this function, du(t, fi,
n.)/dt, computed taking into account the perturbed system of equationms
(é.ll), is a negative-definite function when the parameter p is suffi-
ciently small. Indeed, the total derivative of the function u(t, ¢, nj),
the system (2.11) being taken into account, is just

du (i, &; T]j) dv (i, &) \ T v (t, &) m
d1 = a1 e 2 aE, [ E 8is (l) gs (t’ P«) '+‘
i=1 i s=1

m

n *
0X. -
L
4N S W R )]+ D)
P} k s=1
now [z, (1), Lo ;5]
i=1 "
m

F RO W+ D w0+ R GO @19
J=1

k=<1

dw fx (1), t, m;] dxg owlz (1), t, n;1
o, de at

!
i

[0 5 @), felos (0, 1] 4 (e, ), 8) +

Since the function wl xs(t), t, 7] satisfies inequalities analogous
to those for quadratic forms (see [6']), under the hypotheses that the
functions Xi[ xs(t), yp(t), ¢ 1 and Y.[ xs(t), y4(t), t] have bounded
partial derivatives, we are led to the following inequality:

o Wz, (8), t,n;] dz,  dw [z (1), t, ;] -
Z—a—xsj— T +7’*< 2 dyMiM;

s=1 k, j=1

as long as the x,(t, p) and yj(t, p) remain in a bounded portion of the
space x.y .

Considering the structure of the derivative du(t, £, n)/dt in view
of the system of the perturbed motion (2.11), we observe that in spite
of its more complicated appearance than in the linear case we can still
carry out the considerations leading to bounds for du(t, £, qj)/dt along
the same general lines, as was done before for the linear case (see the
discussion following Equation (1.12) above); because, although the func-
tions involved in the present argument need not be quadratic forms, as
in the linear case, they still satisfy inequalities which are similar to
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those satisfied by quadratic forms. Thus we are again led to conclude
that the total derivative du(t, &;, 7;)/dt is negative-definite outside
the domain |£,]> M, {q | > M for suff1c1ently small values of the para-
meter p > 0. Further as in the linear case, it may be shown that the
domain | &, | > M, |n | > M, where M > 0, approaches zero as y » 0, and
that the follow1ng theorem holds:

Theorem 2.1. Suppose that the system of differential equations con-
taining a small parameter, system (2.1), satisfies the following condi-
tions:

1) the system of equations (2.8), which is the linear approximation
to the system of disturbed motions relative to the degenerate system
(2.4), is uniformly asymptotically stable;

2) for each set of fixed values a, and 3 the system (2.9) is such that
there exists a symmetric matrix Ala_, B), uniformly bounded with respect
to a  and f3, having the property that the symmetrized matrix { B} ik
(2. 10) has negative eigenvalues satisfying the inequalities r; < - y(y =
const > 0).

Then for sufficiently small values of the parameter p the solution of
(2.1),%,(¢t, p), ¥ (t, p), with x,(¢), p) = a;, ¥ (to,u) =b; jo» is uni-
formly asymptotlcally stable w1th respect to smal{ var1at1ons of the x;,
and arbitrary variations of the y.,. Given Q> 0, € > 0, there exists a
number p; > 0 such that the following inequality holds:

o () — @ () < e |y (t,p) —y () <e,  fori>1, (Q,e),
|5 (tes ) — 5 () | < Q (2.14)

provided only that p < p,. The number y, may be chosen so small that the
number t; appearing in (2.14) differs from the number t; by less than
any preassigned positive number.
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